酵的物質或下雜魚漿,發酵的物質的優點為不會造成池底累積及成本低廉;缺點為發酵物質與下雜魚漿易有衛生的問題及穩定性不夠,且發酵池(圖3)佔空間。(三)藻水,此類的優點可以減少殘餌對池底的污染及節省飼料成本,缺點為藻相穩定度不夠。

## 文蛤人工餌料研究概況

何(1986)以魚溶漿做為文蛤苗浮 游期餌料,結果以經果汁機高速絞碎乳 化後,懸浮性高,粒徑大小適中,用以 餵食,其變態活存率達77.6%。何 (1987)於1,000 m²室外田間池分格池水 成六個水域,分別使用磷酸石灰、黄豆 粉、紅魚粉、魚溶漿、下雜魚或其浸出 液,投餵文蛤苗,與不投餵比較,經8個 月飼育結果,以下雜魚或其浸出液對文 蛤的成長最佳,最差為磷酸石灰組,投 **餵餌料效果,磷酸石灰組甚致比不投餵** 組差。何(1989)使用磷酸石灰、黄豆 粉、石灰、麥粉、玉米粉、碎米、粉頭 與米糠八種飼料及不同投餌量,比較對 文蛤成長之影響,結果以碎米微量組增 重率最佳,最差為石灰高量組。許 (2002)以魚粉、黃豆粉、商業文蛤飼 料粉、擬球藻、扁藻、味精發酵母液 (CMS) 和麵包酵母菌為餌料,探討文 蛤之適口性,發現各種食物都可被文蛤 接受。周、黄(2003)利用藻水、鰻 粉、有機發酵液及混合鰻粉和有機發酵 液等四種不同的餌料來投餵文蛤,結果 周等(2004)在池水潑灑光合菌和異營

菌探討其對文蛤成長的影響,發現以光 合菌組的成長較佳。黃和陳等(2008) 研究顯示,適量有機酸的添加可以促進 文蛤的成長,提高文蛤的肥滿度,甚至 提高軟體組織肝醣的含量。陳和黃等 (2009)探討生物性顆粒物質(光合 菌、酵母和螺旋藻混合使用)對文蛤成 長影響,結果以光合菌較佳,其次為酵 母菌。黃和陳等(2009)將光合菌、螺 旋藻及酵母菌添加於文蛤粉狀飼料中, 試驗結果顯示對文蛤成長、肥滿度及飼 料效率方面均有促進作用。

## 文蛤液狀餌料研發

近來,水試所海水繁養殖研究中心 考量現有傳統使用餌料之缺點及配合文 蛤攝食之特性,開發具微生物菌體、氨 基酸液、動植物性原料及藻類營養源之 液狀餌料(圖4),並與矽藻、魚粉及 商業飼料比較其育成結果,在外殼長度 及重量增加方面皆以自行開發之液狀餌 料最佳,其次為魚粉組、商業飼料組及 矽藻膏組。肥滿度及肝醣含量的表現方 面以液狀餌料組高於其餘各組,其次為 魚粉組,最差為矽藻膏組及商業飼料 組。文蛤軟體組織之蛋白質含量介於 5.65~6.73 %之間。各組活存率在85.96~ 93.40%之間且各組間無顯著差異( P>0.05)。液狀餌料含動植物顆粒物質 、微生物菌體等可直接被文蛤攝食外, 亦含藻類營養源以利藻類增生以達作水 之目的,與矽藻、魚粉及商業飼料比較 ,有其較佳之育成效果。

## 水產新知

## 結語

文蛤養殖飼料成本約佔32.9~36.7% (郭,2000),無論是投餵魚粉、魚溶 漿、植物性餌料、文蛤配合飼料、鰻魚 配合飼料對養殖戶而言是一沉重負擔, 投入量大都靠業者的經驗法則,是否會 因過量與不足而導致水質底質污染或文 蛤成長緩慢,值得探討;故開發高效低 成本人工餌料及適當的投餵策略乃文蛤 集約式養殖穩定發展的重要關鍵。



圖1、文蛤 (Meretrix lusoria)。



圖2、文蛤人工飼料。



圖3、文蛤餌料之發酵池。



圖4、文蛤液狀餌料。